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Abstract: Undergraduate students pursuing degrees in STEM (Science, Technology, Engineering, and Mathematics)

at two-year colleges in the United States are usually required to take an introductory course in ordinary differential

equation. The pedagogical strategy in most cases has been based primarily on presenting various standard techniques

used in solving differential equations. This approach involves very little student research.

The Mathematics Department at Queensborough Community College (QCC) has adopted a new student research-

based approach to its introductory course in ordinary differential equations. In this approach students learn very

early in the course to apply technology and research techniques to solve real-world problems. This paper presents

some of the student research and our preliminary findings.
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1 Community College in the United

States

In the United States, community colleges, sometimes

called junior colleges, technical colleges, two-year col-

leges, or city colleges, are primarily two-year public

institutions providing lower-level tertiary education

also known as continuing education, granting certifi-

cates, diplomas, and associate degrees. After graduat-

ing from a community college, some students transfer

to a four-year liberal arts college or university for two

to three years to complete a bachelor’s degree. [1]

1.1 Prerequisite for Introduction to Ordi-

nary Differential Equations at QCC

At QCC the prerequisite for the introductory course

in ordinary differential equations is a third course in

elementary calculus with a grade of C or better.

1.2 Course Objectives/Expected Student

Learning Outcomes

Students learn how to analyze ordinary differential

equations quantitatively and qualitatively and apply

their knowledge to the solution of real world prob-

lems. The methods for solving equations will include

separation of variables, solving homogeneous and non-

homogeneous linear equations of first-order and higher,

homogeneous and non-homogeneous linear systems,
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Laplace transform. Students use software such as

Maple R© and Matlab to aid in their research. The text

used is Fundamentals of Differential Equations by R.

Keut Nagle et al. [2].

2 Grading Policy

A comparison of the grading policies is shown below:

Old Grading Policy New Research-based

Grading Policy

3 Exams 60% 2 Exams 40%

1 Mid-term 20% Research Project 40%

1 Final 20% 1 Final 20%

Total 100% 100%

The former course outline is shown below. The

text book used was Elementary Differential Equations,

by Earl D. Rainville [3].

Subject Matter Hours

Definitions, Introduction 2

Equations of First-Order 5

Nonlinear Equations 2

Elementary Applications 7

Linear Differential Equations 12

Non-homogeneous Equations 4

Variation of Parameters 6

Application: Keplers Laws 3

Systems of Equations 4

The Laplace Transform 10

Inverse Transform 5

Numerical Methods 4

Electrical Applications 2

Total 66

The new research-based course outline, is shown

below. The text being used is Fundamentals of Differ-

ential Equations by R. Kent Nagle [2].

Subject Matter Hours

Module 1: 9

Introduction

Direction fields

Isoclines

Module 2: 21

First Order Differential Equations

Mathematical Models

Involving First-Order Equations

Laplace Transform Methods

Applied to First-Order

Equations

MODULE 3: 18

Linear Second-Order Equations

Laplace Transform Methods

Applied to Second-Order Equations

MODULE 4: 18

Theory of Higher-Order

Linear Differential Equation

Laplace Methods for Linear Systems

Matrix Methods for Systems

Total 66

Research projects were assigned in the middle of

Module 2. In addition, each module was initiated with

an application problem from Physics, engineering or

business.

3 Final Exam Results

Final exam results for Fall 2015 and Fall 2017

Semesters are shown below. The Fall Semester starts

in late August and ends in mid/late December. The

research-based pedagogical approach began in Fall

2017. The Course did not run in Fall 2016.

Fall 2015 Fall 2017

Average: 57% Average: 77%

Class Size: 15 Class Size: 16

The same exam was given to both groups.

3.1 Research Projects

Research projects for three of the Fall 2017 students

follows and are meant to demonstrate the high quality

of the research. The problems were posed in [2].

1. Differential Equations in Clinical Medicine by

Yanyan Chen

2. Aircraft Guidance in a Crosswind by Jonathan

Martinez
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3. Dynamics of HIV Infection by Yang He.

Professor John Gordon mentored all three students.

4 Differential Equations in Clinical

Medicine

Yanyan Chen

Introduction:

In this project, we model the mechanical process per-

formed by the ventilator. In clinical medicine, me-

chanical ventilation can assist or replace spontaneous

breathing for critically ill patients, using the ventilator

device. Modern ventilation uses positive pressure to

inflate the lungs of the patient. The goal of mechanical

ventilation is to provide oxygen to the lungs and to

remove carbon dioxide.

In this model, we assume the following process of

filling the lungs with air and then letting them deflate

to some rest volume.

1. The length (in seconds) of each breath is fixed

(ttot) and is set by the clinician, with each breath

being identical to the previous breath.

2. Each breath is divided into two parts: inspiration

(air flowing into the patient) and expiration (air

flowing out of the patient). We assume that in-

spiration takes place over the interval [0, ti] and

expiration over the time interval [ti, ttot]. The

time ti is called the inspiratory time.

3. During inspiration the ventilator applies a con-

stant pressure Papp to the patient’s air-way, and

during expiration this pressure is zero, relative

to atmospheric pressure. This is called pressure-

controlled ventilation.

4. We assume that the pulmonary system (lung) is

modeled by a single compartment. Hence, the

action of the ventilator is similar to inflating a

ballon and then releasing the pressure.

Given the pressure balance:

Pr + Pe + Pex = Paw (1)

where Pr denotes pressure losses due to resistance

to flow into and out of the lung, Pe is the elastic

pressure due to changes in volume of the lung,

at the completion of a breath, and Paw denotes

the pressure applied to the airway. (Paw = Papp

during inspiration and Paw = 0 during expira-

tion). The residual pressure Pex is called the end-

expiratory pressure.

5. Let V (t) denote the volume of the lung at time

t, with Vi(t), 0 ≤ t ≤ ti, denoting its volume

during inspiration and Ve(t), ti ≤ t ≤ ttot,
its volume during expiration. We assume that

Vi(0) = Ve(Vtot) = 0. The number Vi(ti) = VT

is called the tidal volume of the breath.

6. We assume that the resistive pressure Pr is pro-

portional to the flows into and out of the lung such

that Pr = R(dV/dt), and we assume that the pro-

portionality constant R is the same for inspiration

and expiration.

7. Furthermore, we assume that the elastic pressure

is proportional to the instantanous volume of the

lung. That is, Pe = (1/C)V , where the constant

C is called the compliance of the lung.

Using the pressure balance the equation (1) together

with the above assumptions, a mathematical model for

the instantaneous volume in the single compartment

lung is given by the following pair of first-order linear

differential equations:

R

(

dVi

dt

)

+

(

1

C

)

Vi + Pex = Papp, 0 ≤ t ≤ ti,

(2)

R

(

dVe

dt

)

+

(

1

C

)

Ve + Pex = 0, ti ≤ t ≤ ttot,

(3)

Strategy:

(a) Solve equation (2) for Vi(t) with the initial condi-

tion Vi(0) = 0.

(b) Solve equation (3) for Ve(t) with the initial con-

dition Ve(ti) = VT .

(c) Using the fact that Vi(ti) = VT , show that

Pex = (eti/RC−1)Papp/(e
ttot/RC − 1)

(d) For R = 10 cm H2O/L/sec, C = 0.02 L/cm

(H2O), Papp = 20 cm (H2O), ti = 1 sec and

ttot = 3 sec, plot the graphs of Vi(t) and Ve(t)
over the interval [0, ttot]. Compute Pex for these

parameters.

(e) The mean alveolar pressure is the average pres-

sure in the lung during inspiration and is given by

the formula

Pm =
1

ti

∫ ti

0

(

Vi(t)

C

)

dt+ Pex.

Compute this quantity using the expression for

Vi(t) in part (a).
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Analysis:

For problems (a) and (b), we use the method studied

in [2] to solve the linear first-order equation, in form

a1(x)dy/dx+ a0(x)y = b(x).

Calculation:

a)

R
dVi

dt
+

1

C
Vi = Papp − Pex

dVi

dt
+

1

CR
Vi =

Papp − Pex

R

µ(x) = e
∫

1

CR
dt = e

1

CR
t

e
1

CR
tdVi

dt
+

1

CR
e

1

CR
tVi = e

1

CR
t

(

Papp − Pex

R

)

e
1

CR
tVi =

∫

e
1

CR
t

(

Papp − Pex

R

)

dt

e
1

CR
tVi = CRe

1

C
t

(

Papp − Pex

R

)

+ constant

0 = C(Papp − Pex) + constant

constant = −C(Papp − Pex),

e
1

CR
tVi = Ce

1

CR
t(Papp − Pex)− C(Papp − Pex)

= C(Papp − Pex)(e
1

CR
t − 1)

Vi = C(Papp − Pex)
(

1− e−
1

CR
t
)

b)

R
dVe

dt
+

1

C
Ve + Pex = 0

dVe

dt
+

1

CR
Ve = −Pex

R

µ(x) = e
∫

1

CR
dt = e

1

CR
t

e
1

CR
tdVe

dt
+

1

CR
e

1

CR
tVe = e

1

CR
t

(

−Pex

R

)

e
1

CR
tVe = −CRe

1

CR
tPex + constant

when t = ttot, ve = 0,

0 = −Ce
1

CR
tPex + constant

constant = Ce
1

CR
tPex

e
1

CR
tVe = −CRex

(

e
1

CR
t − e

1

CR
ttot

)

Ve == −CPex

(

1− e
1

CR
(ttot−t)

)

c) When t = ti, vi = ve;

C(Papp − Pex)
(

e
1

CR
t − 1

)

= −CPex

(

e
1

CR
t − e

1

CR
ttot

)

CPapp

(

e
1

CR
t − 1

)

= −CPex

(

e
1

CR
t − e

1

CR
ttot

)

+ CPex

(

e
1

CR
t − 1

)

Papp

(

e
1

CR
t − 1

)

= Pex

(

e
1

CR
ttot − 1

)

Pex =
Papp

(

e
1

CR
t − 1

)

(

e
1

CR
ttot − 1

)

Proved.

d) R = 10 cm H2O/L/sec, C = 0.02 L/cm (H2O),

Papp = 20 cm (H2O), ti = 1 sec and ttot = 3
sec;

Pex =
20

(

e
1

10+0.02 − 1
)

e
3

10+0.02 − 1
= 9.019 ∗ 10−4

For the graphs of Vi(t) and Ve(t) over the inter-

val [0, ttot], through the result of the calculation,

we find that Vi increases with time in the inter-

val [0, ti]; Ve decreases with time in the interval

[ti, ttot].

e)

Pm =
1

ti

∫ ti

0

(

Vi(t)

C

)

dt+ Pex

=
1

ti

∫ ti

0

(

(Papp − Pex(1− e−
1

CR
t)
)

dt+ Pex

=
Papp − Pex

ti

(

t+ CRe−
1

CR
t
)

|ti0 + Pex

=
Papp − Pex

ti

(

ti + CRe−
1

CR
ti − CR

)

+ Pex
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Finally plug (c) into above, we have

Pm = Papp +
Papp − Pex

ti
CR

(

e−
1

CR
ti − 1

)

= Papp + CR
Papp

ti

(

e
1

CR
ttot − e

1

CR
ti
)

(

e
1

CR
ttot − 1

)

5 Summary

By setting up a model of the ventilator, we were able

to model the breathing process with linear first-order

differential equations. Using the pressure balance equa-

tion we were able to solve these equations.

Aircraft Guidance in a Crosswind

Jonathan Martinez

Problem

An aircraft flying under the guidance of a nondirec-

tional beacon (a fixed radio transmitter, abbreviated

NDB) moves so that its longitudinal axis always points

toward the beacon (see Figure 3.19). A pilot sets out

toward an NDB from a point at which the wind is at

right angles to the initial direction of the aircraft; the

wind maintains this direction. Assume that the wind

speed and the speed of the aircraft through the air (its

“airspeed”) remain constant. (Keep in mind that the

latter is different from the aircraft’s speed with respect

to the ground.)

a) Locate the flight in the xy-plane, placing the start

of the trip at (2, 0) and the destination (0, 0).

Set up the differential equation describing the

aircraft’s path over the ground.

b) Make an appropriate substitution and solve this

equation.

c) Use the fact that x = 2 and y = 0 at t = 0 to

determine the appropriate value of the arbitrary

constant in the solution set.

d) Solve to get y explicitly in terms of x. Write your

solution in terms of a hyperbolic function.

e) Let γ be the ratio of windspeed to airspeed. Using

a software package, graph the solutions for the

cases γ = 0.1, 0.3, 0.5 and 0.7 all on the same set

of axes. Interpret these graphs.

f) Discuss the cases γ = 1 and γ > 1.

6 Analysis

In order to understand the problem we first drew a pic-

ture. At all times the wind speed and aircraft airspeed
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are constant. We can make a few observations: the air-

craft points to the origin at all times, thus has an angle

that changes with respect to the x axis. This means

the aircraft’s speed can be split into two components,

the vertical component which points downward and

needs to overcome the wind speed, and the horizontal

component, which is dependent on the angle of the

airplane. These two components are then changing

with respect to one another. This allows us to find both

components. We are not interested in the net speed of

the aircraft but rather its x-y position.

Solution

Let:

Vw = wind speed

Va = aircraft speed

We express the two components of the aircraft’s

actual speed as follows:

Vnet y = Va sin(θ)− Vw ⇒ dy

dt
= Va sin(θ)− Vw

Vnet x = Va cos(θ) ⇒
dx

dt
= Va cos(θ)

Consequently,

dy

dt
= Va

y
√

x2 + y2
− Vw

dx

dt
= Va

x
√

x2 + y2

We want change in y with respect to change in x, thus:

dy

dx
=

dy

dt
dx

dt

=
Va

y√
x2+y2

Va
x√

x2+y2

=
dy

dx
=

y

x
− Vw

Va

√

x2 + y2

x

We notice the equation obtained is a homogeneous

equation similar to those studied in class, and we also

notice that Vw

Va
is a constant ratio.

dy

dx
=

y

x
− Vw

Va

√

x2 + y2

x

x−2

√
x−2

=
y

x
− Vw

Va

√

1 +
(y

x

)2

let v = y
x thus y′ = v + xv′ = v + x dv

dx

v + x
dv

dx
= v − Vw

Va

√

1 +
√
v2 ⇒ x

dv

dx
= −Vw

Va

√

1 + v2

1√
1 + v2

dv = −Vw

Va

1

x
dx ⇒

∫

1√
1 + v2

dv

= −Vw

Va

∫

1

x
dx

sinh−1
( y

xx

)

= −Vw

Va
ln(x) + c

We take the sinh of both sides and rearrange a few

terms to obtain the following expression:

y = x sinh

(

c− Vw

Va
ln(x)

)

Using the initial condition t = 0, y = 0, x = 2, we

obtain

0 = 2 sinh

(

c− Vw

Va
ln(2)

)

Consequently,

c− Vw

Va
ln(2) = 0 ⇒ c =

Vw

Va
ln(2)

Our final expression is:

y = x sinh

(

Vw

Va
ln(2)− Vw

Va
ln(x)

)

y = x sinh

(

Vw

Va
ln

(

2

x

))

We plot the function y = x sinh
(

Vw

Va
ln

(

2
x

)

)

where the ratio γ = Vw

Va
is 0.1, 0.3, 0.5, and 0.7.

If the airspeed to wind speed ratio is 1 then the

airplane will not be able to make it to its destination.

If the ratio is greater than one then the aircraft will be

vertically displaced indefinitely.
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7 Dynamics of HIV infection

Yang He

7.1 Introduction

The dynamics of HIV (human immunodeficiency virus)

infection within a human host involve the interaction

of the HIV virions and CD4+ T lymphocytes. CD4+ T

lymphocytes are long-lived white blood cells that play

a major role in the defense of the human body against

microbial invaders. HIV targets these very cells. When

HIV first appeared as a new and major health threat, it

was recognized that the disease typically exhibited a

lengthy gradual progression lasting 10 or more years.

It was widely believed that the dynamics of HIV de-

struction of the CD4+ T-cell population involved a

very low rate of infection and a very slow turnover of

virus and infected cells. In 1995 differential equation

models of HIV-CD4+ T-cell interaction revealed that

the turnover rate for the infected CD4+ T cells was

very much faster than this (about 2 days)—a scientific

breakthrough reported simultaneously in the papers of

D. D. Ho et al., “Rapid Turnover of Plasma Virions

and CD4 Lymphocytes in HIV-1 Infection,” Nature,

1995; and of G. M. Shaw et al., “Viral Dynamics in Hu-

man Immunodeficiency Virus Type I Infection,” Nature,

1995. Underlying the models in these papers is the

knowledge that within a person infected with HIV, the

virus spends part of its existence free and part inside an

infected CD4+ T cell. The time spent free was known

to be very short—on the order of 30 minutes. The time

spent inside an invaded CD4+ T cell was believed to

be very long—on the order of years. When a cell was

invaded, a virion (a complete viral particle, consist-

ing of RNA surrounded by a protein shell) took over

the cell’s DNA and used it to replicate its own RNA,

thereby creating new virions; then it budded, or burst

the cell, to release multiple virus particles. [2]

7.2 Methodology:

1) Definitions of parameters and variables:

T(t) = the population of uninfected CD4+ T cells

at time t.
I(t) = the population of infected CD4+ T cell at

time t.
V(t) = the population of virus at time t.
λ(cells/day) = constant input source of unin-

fected cells per day (the human body produces these

cells daily in the thymus).

δday−1 = normal loss rate constant of uninfected

cells (1/δ = the average lifespan of an uninfected cell

in days2).

β(virions−1 ∗ day−1) = infection rate constant

of uninfected cells per infected cell (the rate is of mass

action form, i.e., βV (t)T (t)).
µ(day−1) = loss rate constant of infected cells

(1/µ = the average lifespan of an infected cell in days).

µday−1 = loss rate of free virus (1/γ = the aver-

age lifespan of a free virion in days).

N(virions−1 ∗ cell−1) = number of virions pro-

duced per day per infected cell (the burst number of an

infected cell).

2) Mathematical Models and Numerical Methods

Involving First-Order Equations:

Figure 1: Compartmental views of virus, uninfected T
cells, and infected I cells

The independent variable of the model is time t in

days and the dependent variable of the model are T (t),
I(t), and V (t). The equations are as follows

d

dt
T (t) = λ− δT (t)− βV (t)T (t)

d

dt
I(t) = βV (t)T (t)− uI(t)

d

dt
V (t) = NµI(t)− γV (t)

The average lifespan of a free virion, 1/γ, is ap-

proximately 30 minutes, which means γ ≈ 48 day−1.

On the other hand, it was thought that 1/m, the average

length of time an infected CD4+ T cell lasts before

bursting to produce new virions, should be several

years, implying that m must be quite small (on the

order of 10−3 day1). However, when drugs to treat

HIV infection first became available in the mid-1990s,

researchers were able to deduce a surprisingly different

value from patient data and the differential equation

models.

Calculations:

To incorporate the effect of treatment in the differential

equations model, set β = 0; that is, assume the action

of the drug completely inhibits the infection process.

This is a reasonable approximation and it simplifies

the analysis.
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Then, the equation system became,

d

dt
T (t) = λ− δT (t) (1)

d

dt
I(t) = −µI(t) (2)

d

dt
V (t) = NµI(t)− γV (t) (3)

Equation (1) becomes d
dtT (t) + δT (t) = λ, δ and

λ are constants.

Then let u(x) = e
∫
δdt = eδt, and multiply both

sides by eδt,

⇒ d

dt
[eδt · T (t)] = λeδt

∫

d

dt
[eδt · T (t)] =

∫

λeδt

[eδt · T (t)] = λeδt

δ
+ C

T (t) =
λeδt

δeδt
+

C

λeδt

T (t) =
λ

δ
+

C

λeδt

T (t) =
λ

δ
+ C · λe−δt (4)

Move −µI(t) to left side from equation (2) to

obtain

d

dt
I(t) + µI(t) = 0

Let u(x) = e
∫
µdt = eµt, multiply both sides by eµt to

get

d

dt
[eµt · I(t)] = 0

[eµt · I(t)] = C

I(t) =
C

eµt
= C · e−µt (5)

To get the reduced form of equation (3), substitute

equation (4) into equation (3)

d

dt
V (t) = NµC · e−µt − γV (t) (6)

Since the parameters N , µ, C, and γ are constants let

C1 = NµC
then,

d

dt
V (t) = C1 · e−µt − γV (t)

Consequently,

d

dt
V (t) + γV (t) = C1 · e−µt

Let u(x) = e
∫
γdt = eγt, and multiply both sides by

eγt,

eγt · d

dt
V (t) + eγt · γV (t) = eγt · C1 · e−µt

dv

dt
[eγt · V (t)] = eγt · C1 · e−µt

dv

dt
[eγt · V (t)] = C1 · eγt−µt = C1 · e(γ−µ)t

eγt · V (t) = C1/(γ − µ) · e(γ−µ)t + C2

eγt · V (t) = NµC/(γ − µ) · e(γ−µ)t + C2

V (t) =
NµC

γ − µ
e−µt + C2e

−γt (7)

The reduced forms for T (t), I(t) and V (t) are,

T (t) =
γ

δ
+ C · λe−δt

I(t) =
c

eµt
= C · e−µt

V (t) =
NµC

γ − µ
e−µt + C2e

−γt (8)

For T (t), apply the initial condition T (0) = T0,

I(0) = I0, and V (0) = V0,

T (0) =
λ

δ
+ C · λe−0·t = T0 ⇒ C = T0/λ− 1

δ

then,

T (t) =
λ

δ
+ T0λe

−δt − λ

δ
e−δt

I(0) = C · e−µ·0 = I0 ⇒ C = I0

then,

I(t) = I0e
−µt

V (0) =
NµI

γ − µ
e−µ+0+C2e

−γ·0 = V0 ⇒ C = V0−
NµI

γ − µ

Then,

V (t) =
NµI

γ − µ
e−µt + (V0 −

NµI

γ − µ
)e−γt,

where NµI
γ−µ is a constant. Studies ([4], [5], [6]) have

shown that

γ ≈ 48day−1

µ ≈ 10−3 day−1

From the formula for V (t) we found that the graph

of V (t) on a log scale (i.e., the graph of log V ) over

an extended period of time (say, several weeks) will

tend toward a graph of a straight line whose slope

is either −γ (the negative reciprocal of the average
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lifepan of a free virus) or −µ (the negative reciprocal

of the average lifespan of an infected CD4+ T cell),

according to whether γ or µ is smaller. See Figure 2

below and [2].

Taking ln of the function V (t)

ln{V (t)} = ln

{

NµI

γ − µ
e−µt +

(

V0 −
NµI

γ − µ

)

e−γt

}

Since NµI
γ−µ and V0 are constants, let K1 =

NµI
γ−µ , K2 =

V0 − NµI
γ−µ , then the equation becomes,

ln(V (t)) = ln(K1e
−ut +K2e

−γt) (9)

To find the asymptote, we apply the limit to V (t) to

obtain

lim
t→∞

V (t)

t
= lim

t→∞

ln(K1e
−µt +K2e

−γt)

t

= lim
t→∞

ln(K1e
−µt+K2e

−γt)
1

t

Case 1: γ > µ

lim
t→∞

ln(K1e
−µt +K2e

−γt)
1

t

= lim
t→∞

ln(K
1

t

1 e
−µ)

= ln(e−µ) = −µ

Then the slope of the asymptote is −µ.

Case 2: γ < µ

lim
t→∞

ln(K1e
−µt +K2e

−γt)
1

t

= lim
t→∞

ln(K2e
−γt)

1

t = lim
t→∞

ln(K
1

t

1 e
−γ) = −γ

Then the slope of the asymptote k is −γ
Case 3: γ = µ

lim
t→∞

ln(K1e
−µt +K2e

−γt)
1

t

= lim
t→∞

ln((K1 +K2) ∗ e−µt)
1

t = −µ = −γ

To find the y-intercept, b, of the asymptote we need to

substitute the slope k into eq (9).

Since the slope of the asymptote is −γ, then

b = ln(K1e
−ut +K2e

−γt)− ln(e−γt)

= ln

(

K1
e−ut

e−γt
+K2

)

= ln(K1e
(γ−u)t +K2)

When γ = µ,

lim
t→∞

ln(K1e
(γ−u)t +K2) = lim

t→∞
ln(K1e

0t +K2)

= ln(K1 +K2)

When γ < µ,

lim
t→∞

ln(K1e
(γ−u)t +K2) = ln(K2)

When γ > µ,

ln(K1e
−ut +K2e

−γt)− ln(e−ut)

= ln

(

K1 +K2
e−γt

e−ut

)

ln(K2e
(u−γ)t +K1)

lim
t→∞

ln(K2e
(u−γ)t +K1)

= ln(K1)

In conclusion, the asymptote equations y = kt+ b are,

When γ > µ, y = −γt+ ln(K1)
When γ < µ, y = −γt+ ln(K2)
When γ = µ, y = −γt+ ln(K1 +K2) = −µt+

ln(K1 +K2)

Figure 2: Viral load decrease in three HIV patients

8 Conclusion

After adopting a research-based pedagogical approach

to teaching Introduction to Ordinary Differential Equa-

tions at Queensborough Community College we no-

ticed a marked improvement in student performance

on the cumulative final examination. The class average

increased by about 20 percentage points.

Student attitude and engagement in lecture was

observed to be more positive.

While we have limited data for comparative pur-

poses, the results observed in data are encouraging and

we plan on continuing this pedagogical approach going

forward.
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